Jamborite \((\text{Ni}^{2+}, \text{Ni}^{3+}, \text{Fe})(\text{OH})_2(\text{OH}, \text{S}, \text{H}_2\text{O})(?)\)

Crystal Data: Hexagonal (probable). Point Group: n.d. As aggregates of parallel fibers and lamellae, some bent, replacing millerite needles; cryptocrystalline massive.

Physical Properties: Hardness = n.d. D(meas.) = 2.67 D(calc.) = 2.69

Optical Properties: Semitransparent. Color: Green. Optical Class: Uniaxial (−); appears isotropic in fine aggregates. \(\omega = 1.607(2)\) \(\epsilon = 1.602(2)\)

Cell Data: Space Group: n.d. \(a = 3.07\) \(c = 23.3\) \(Z = 3/8\)

X-ray Powder Pattern: Italy.
7.78 (10), 2.592 (6), 1.530 (5), 3.89 (4), 1.500 (3), 2.320 (1), 1.321 (1)

Chemistry: (1) Italy; by electron microprobe, original analysis Ni 42.0–49.4%, thought to be both Ni\(^{2+}\) and Ni\(^{3+}\); Co 1.9%, Fe 0.9%, Mg < 0.2%, S 3.5%.

Occurrence: In small cavities in ophiolitic rocks (Italy); in serpentinites (Shinshiro, Japan).

Association: Millerite, calcite, dolomite, quartz (Italy); gaspéite, glaucosphaerite, mcguinnessite (Shinshiro, Japan).

Name: To honor John Leslie Jambor (1936–), Canadian mineralogist with the Geological Survey of Canada.

Type Material: University of Bologna, Bologna, Italy.